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Abstract. Molecular dynamics simulation techniques have been used to study the equili- 
brium configurational properties of freely moving polymer chains constructed from linked 
elastic spheres. The mean square end-to-end distance and radius of gyration are found to 
vary exponentially with chain length, and the results are similar to those obtained in 
Monte Carlo and self-avoiding walk studies. It is suggested that molecular dynamics is 
capable of yielding results of the same quality as Monte Carlo, while avoiding the inherent 
sampling problems. 

In this Letter we describe the results of applying molecular dynamics computer 
simulation techniques to the study of the configurational properties of a polymer chain 
in dilute solution. Over the past twenty years, molecular dynamics studies of elastic 
discs and spheres have proved highly successful in exploring phenomena such as the 
melting transition and the nature of fluid transport at a microscopic level (Alder 
1973). However, no application of these methods to a study of the equilibrium 
properties of long chain polymer molecules appears to exist. 

One of the original papers on molecular dynamics (Alder and Wainwright 1959) 
included a detailed discussion of the principles involved, with emphasis on a system of 
hard spheres interacting via a square well potential. The essence of the method, which 
is suitable for systems involving step potentials, is that all the atoms (i.e. spheres or 
discs) move with constant velocity until any two of them encounter a change in their 
mutual interaction potential, at which stage an elastic collision occurs. The evolution 
of the system is thus characterised by a sequence of binary collisions; the two kinds of 
computation involved in the simulation are the prediction of the next collision, if any, 
between a pair of atoms, and the determination of the outgoing velocities following a 
collision. 

A model of a freely moving polymer chain which fits into the above scheme, and 
whose simulation involves computations of the kind just mentioned, is constructed in 
the following way. The chain is composed of N +  1 hard spheres of diameter D 
attached to each other in ‘necklace’ fashion by sliding links connecting their centres. 
The length of each link-the bond length-is free to vary over the range L to (1 + S)L, 
with S > 0. When the link length reaches either of its limits an elastic collision occurs 
between the two spheres involved, the result of which is a change in their velocity 
components parallel to the link. No other interaction energy is associated with the 
link. Pairs of spheres which are not adjacent chain members obey the excluded 
volume condition in that they collide elastically when their centres approach to a 
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distance D. By relaxing the constraint of fixed bond length we have converted the 
complicated equations of motion of a chain of tightly coupled spheres (8 = 0) into a 
problem of essentially independent colliding spheres (S > 0) which move with constant 
velocity between collisions. 

In choosing a suitable value for S there are two conflicting requirements which 
must be satisfied. The results are later to be compared with those obtained by Monte 
Carlo analysis, and with numerical results for self-avoiding walks on lattices, both of 
which correspond to the case S = 0; consequently S should be chosen as small as 
possible. However, the magnitude of S determines how large a fraction of the 
collisions in the system involve adjacent chain members. This fraction grows rapidly 
as S decreases, and since computation time is proportional to the total number of 
collisions which occur, the simulation will be unable to adequately sample configura- 
tion space if the fraction is too large. A compromise value of S = 0.1 was adopted, and 
appears to fulfil both requirements. 

It should be pointed out that in this simplest of models the spheres are freely 
linked and that there is no attempt to restrict the angles between consecutive bonds, 
nor are there any intra-chain interactions present apart from the excluded volume. 
Such improvements to the model are readily incorporated and are currently being 
studied. Furthermore, the model neglects modifications to the motion due to the 
presence of other chains or the solvent, though the simulation can be extended to 
include these effects as well. 

Chains of various lengths ranging from N + 1 = 10 to 50, with L = D = 1, were 
simulated, and several chains of each length were studied. The initial state (whose 
influence faded rapidly) was taken to be a regular helix, but the initial velocities were 
assigned random values. A chain was first allowed to evolve for a period of time to 
eliminate the effects of the initial state, and then the configurational properties-mean 
bond length, end-to-end distance, and radius of gyration (i.e. the root mean square 
distance of the spheres from their centre of mass)- were measured at regular time 
intervals. These intervals were sufficiently long for there to be little correlation 
between consecutive measurements. The overall average estimates of the mean 
square end-to-end distance (R') and radius of gyration (S'), based on 1000-2000 
measurements for each N, are summarised in table 1, and plotted against N on a 
log-log scale in figure 1. 

Table 1. Results for chains with D = 1 ,  L = 1 .  n, is the number of measurements made, 
and the error estimates are the standard deviations obtained by dividing the data into eight 
groups. 

N + l  ns (R2) (S2) 

10 
12 
16 
20 
24 
28 
32 
40 
50 

1420 
1112 
1112 
1112 
1428 
1904 
1775 
1675 
2080 

17*26* 1.18 
22.40i0.70 
32.34f 1.63 
42*88* 1.24 
54.41 f2.95 
66.04f 1.44 
79.14* 1.60 
97.94 f 2.37 

142.85f 1.91 

2.83 * O . l l  
3.58 f. 0.07 
5-24 f 0.16 
6.86f0.14 
8.73 *0.29 

10.53*0.09 
12.70 f 0.18 
16.33 f0.16 
22 .36 i  0.42 
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Figure 1. Log-log plots of (R2) and (S2) against N. The straight lines indicate the results 
of least square fits to the data. 

Studies of the self-avoiding walk model of a polymer chain on three-dimensional 
lattices, using exact enumeration and Monte Carlo methods, have established that 
asymptotically (R') - u ~ N ~ ~ ~  and (S') - (where N is the number of steps), 
with 2uR = 2us = 1.20 (e.g. Domb 1969, Rapaport 1975). The apparent lattice 
independence of the exponents uR and US (universality) suggests that the same 
asymptotic forms might also apply to free chains not confined to a lattice. In order to 
test this idea we have performed least square fits of ln(R2) and ln(S') to 1nN and the 
results obtained are 2vR = 1*220f0*016,  2us= 1*213rt0.016, with QR = 1*12f0*07 ,  
as = 0.184 f 0.010. The straight lines corresponding to these values are included in 
figure 1. The variable bond length could only be incorporated into the analysis in an 
approximate manner by multiplying N by the average bond length (equal to 1.052 for 
each N studied), but the exponent values themselves are not affected by this cor- 
rection. The error estimates given are the standard deviations obtained by dividing 
the raw data into eight groups and fitting each group separately; they are not given in 
order to establish firm bounds on the results, but merely to provide some idea of the 
dispersion involved. The values of 2uR and 2us exceed the accepted lattice estimates 
by 1-2%, but in view of the errors we feel that the possibility of 1.20 being the correct 
result is not excluded. 

One question which can be legitimately raised is whether asymptotic behaviour 
can be expected from chains of lengths in the range 10 to 50. The fact that the data 
points in figure 1 lie close to the straight line is evidence that this may indeed may be 
the case. Further support for asymptotic behaviour at these values of N, at least for 
(R'), is obtained from a self-consistent field analysis of the excluded volume problem 
(Edwards 1965) which predicts (R') - aRN1"' for N >> L ( L / ~ I ) ~ ,  and since L = D = 1 
in the simulation, even the shortest chains satisfy this criterion. Finally, lattice based 
self-avoiding walk studies using exact enumeration techniques are limited to small N 
(in the range 10-20, depending on the lattice), and here too asymptotic behaviour is 
generally observed. 
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The freely linked hard sphere chain had previously been studied using Monte 
Carlo methods, and for the case L = D the exponent estimates obtained are as follows. 
Grishman (1973) obtained 2vR = 1.20-1.22 using chains with N S 5 0 0 ,  and in a 
similar study with N Q  1024 Bruns (1977) found that 2vR = 2 v ~  = 1.19-1.20. Smith 
and Fleming (1975) used a different sampling scheme involving inexact configuration 
weights, and obtained 2vR = 1.21, 2vs = 1.16 for N S  100; however in view of the 
other estimates (both molecular dynamics and Monte Carlo) it appears that this low vs 
value is incorrect, possibly due to the weighting scheme whose influence on the results 
cannot be predicted. Overall it seems reasonable to conclude that both 2vR and 2vs 
lie in the range 1.19-1.22. It will be noticed that Bruns’ estimates of ( R 2 )  and (S’), 
and consequently aR and as, are significantly larger than those obtained here; we are 
unable to offer an explanation for this at present. 

We have also applied the molecular dynamics technique to chains with D = 0.5, 
L = 1, and the results are shown in table 2 and figure 1. The least square fits to the 
data yield 2vR = 1.216*0.054, 2vs = 1*150*0.027 and aR =0.62*0.12, as = 
0.135 *0.013; the larger errors than for D = 1 are a consequence of fewer simulation 
runs. vR seems to be unchanged from D = 1, but vS has decreased considerably. 

The Monte Carlo exponent estimates for this case are as follows: Grishman (1973) 
2vR = 1.20-1.23; Bruns (1977) 2vR = 1.174, 2vs = 1.169; Smith and Fleming (1975) 
2vR = 1.165, 2vs= 1.07 (this value is obtained by interpolation). Thus while there 
appears to be general agreement that 2 v ~  is definitely below 1.20, the vR values 
obtained by molecular dynamics and Monte Carlo fall into two distinct groups. In 
view of the fact that much longer chains may be required to obtain full asymptotic 
behaviour for D e l ,  further analysis of the various sets of data taking this into 
account may help resolve this issue. 

In conclusion, it has been demonstrated that molecular dynamics simulation is a 
successful technique for studying the static configurational properties of polymer 
models. Simulation represents a true numerical experiment whose advantages over 
the Monte Carlo method are that it does not require a source of random numbers 
(with whatever subtle errors the possible irregularities in the random number genera- 
tor may introduce into the results), nor does it require decisions regarding the relative 
weights of the sampled configurations. Furthermore, it is capable of reproducing 
dynamic behaviour, and a study of this topic, together with a more extensive analysis 
of the static properties will be presented in subsequent articles. 

Table 2. Results for chains with D = 0.5, L = 1 

N + l  4 (R2) (SZ) 

10 808 9*51f0 .53  1.81 *0.06 
16 965 17.85* 1.01 3.21 zk0.15 
24 965 29.1252.28 5.11f0.18 
32 1010 40.20 f 1 . 1 3  6.99*0.10 
40 1100 6 1 5 1 f 5 . 0 4  10.31 k0.40 
50 802 72.45 f 5.36 12.42k0.48 
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